Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polynomial-Time Constant-Approximation for Fair Sum-of-Radii Clustering

Authors: Bagheri Nezhad, Sina; Bandyapadhyay, Sayan; Chen, Tianzhi;

Polynomial-Time Constant-Approximation for Fair Sum-of-Radii Clustering

Abstract

In a seminal work, Chierichetti et al. introduced the $(t,k)$-fair clustering problem: Given a set of red points and a set of blue points in a metric space, a clustering is called fair if the number of red points in each cluster is at most $t$ times and at least $1/t$ times the number of blue points in that cluster. The goal is to compute a fair clustering with at most $k$ clusters that optimizes certain objective function. Considering this problem, they designed a polynomial-time $O(1)$- and $O(t)$-approximation for the $k$-center and the $k$-median objective, respectively. Recently, Carta et al. studied this problem with the sum-of-radii objective and obtained a $(6+ε)$-approximation with running time $O((k\log_{1+ε}(k/ε))^kn^{O(1)})$, i.e., fixed-parameter tractable in $k$. Here $n$ is the input size. In this work, we design the first polynomial-time $O(1)$-approximation for $(t,k)$-fair clustering with the sum-of-radii objective, improving the result of Carta et al. Our result places sum-of-radii in the same group of objectives as $k$-center, that admit polynomial-time $O(1)$-approximations. This result also implies a polynomial-time $O(1)$-approximation for the Euclidean version of the problem, for which an $f(k)\cdot n^{O(1)}$-time $(1+ε)$-approximation was known due to Drexler et al.. Here $f$ is an exponential function of $k$. We are also able to extend our result to any arbitrary $\ell\ge 2$ number of colors when $t=1$. This matches known results for the $k$-center and $k$-median objectives in this case. The significant disparity of sum-of-radii compared to $k$-center and $k$-median presents several complex challenges, all of which we successfully overcome in our work. Our main contribution is a novel cluster-merging-based analysis technique for sum-of-radii that helps us achieve the constant-approximation bounds.

Accepted at 33rd Annual European Symposium on Algorithms (ESA 2025)

Keywords

FOS: Computer and information sciences, fair clustering, Data Structures and Algorithms, sum-of-radii clustering, Data Structures and Algorithms (cs.DS), approximation algorithms, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green