Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An efficient rollback recovery algorithm for distributed mobile computing systems

Authors: T.-Y.T. Juang; null Yuh-Shyan Chen;

An efficient rollback recovery algorithm for distributed mobile computing systems

Abstract

One major breakthrough on the communication society recently is the extension of networking from wired to wireless networks. This has made possible creating a mobile distributed computing environment and has brought us several new challenges in distributed protocol design. Obviously, wireless networks do have some fundamental differences from wired networks that need to be paid special attention of, such as lower communication bandwidth compared to wired networks, limited electrical power due to battery capacity, and mobility of processes. These new issues make traditional recovery algorithm unsuitable. In order to cope with these problems, the tasks of logging and recovery procedure are performed by the MSSs. In this paper, we propose an efficient algorithm with O(n/sub r/) message complexity where O(n/sub r/) is the total number of mobile hosts (MHs) related to the failed MH. In addition, these MHs only need to rollback once and can immediately resume its operation without waiting for any coordination message from other MHs. During normal operation, the application message needs O(1) additional information when it transmitted between MHs and mobile support stations (MSSs). Each MSS must keep an n/sub total-h/*n/sub cell-h/ dependency matrix, where O(n/sub total-h/) is the total number of MHs in the system and n,,n h is the total number of MHs in its cell.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!