
An improved Gaussian dynamic particle swarm optimization (PSO) algorithm is proposed in this paper. In the proposed version of PSO, the original swarm of particles is initialized by canonical PSO. The time varying linear inertial weight is reintroduced to add to the position update formula. And the craziness variable is also used in order to maintain the diversity of particle swarms. The performance of improved Gaussian dynamic PSO is demonstrated by applying it to several benchmark functions and comparing to other variants of PSO.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
