
handle: 11573/1662604
The GNSS reflectometry (GNSS-R) potential for the monitoring of hydrological parameters as soil moisture (SM) and forest aboveground biomass (AGB) has been largely proved in recent years. In this study, algorithms based on Artificial Neural Networks (ANN) have been developed for the retrieval of both SM and AGB from GNSS-R observations. This activity has been carried out in view of the ESA's HydroGNSS mission. Waiting for HydroGNSS data, the algorithms have been implemented and validated by using the NASA's Cyclone GNSS (CyGNSS) land observations, confirming a promising potential of GNSS-R for the monitoring of both SM and AGB.
CyGNSS; Forest Aboveground Biomass; GNSS reflectometry (GNSS-R); Machine Learning; Soil Moisture
CyGNSS; Forest Aboveground Biomass; GNSS reflectometry (GNSS-R); Machine Learning; Soil Moisture
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
