
In this paper, a modified fuzzy c-regression model (FCRM) clustering algorithm for identification of Takagi-Sugeno (T-S) fuzzy model is proposed. The FCRM clustering algorithm has considerable sensitive to noise. To overcome this problem, a modified FCRM clustering algorithm is presented. This latter is based to adding a second regu-larization term in the alternative optimization process of FCRM. This regularization term is introduce in objective function in order to take in account the data are noisy. The parameters of the local linear models are identified based on orthogonal least squares (OLS). The proposed approach is demonstrated by means of the identification of nonlinear numerical examples.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
