Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neural Networksarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neural Networks
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LSTMED: An uneven dynamic process monitoring method based on LSTM and Autoencoder neural network

Authors: Wenfeng, Deng; Yuxuan, Li; Keke, Huang; Dehao, Wu; Chunhua, Yang; Weihua, Gui;

LSTMED: An uneven dynamic process monitoring method based on LSTM and Autoencoder neural network

Abstract

Due to the complicated production mechanism in multivariate industrial processes, different dynamic features of variables raise challenges to traditional data-driven process monitoring methods which assume the process data is static or dynamically consistent. To tackle this issue, this paper proposes a novel process monitoring method based on the long short-term memory (LSTM) and Autoencoder neural network (called LSTMED) for multivariate process monitoring with uneven dynamic features. First, the LSTM units are arranged in the encoder-decoder form to construct an end-to-end model. Then, the constructed model is trained in an unsupervised manner to capture long-term time dependency within variables and dominant representation of high dimensional process data. Afterward, the kernel density estimation (KDE) method is performed to determine the control limit only based on the reconstruction error from historical normal data. Finally, effective online monitoring for uneven dynamic process can be achieved. The performance and advantage of the process monitoring method proposed are explained through typical cases, including the numerical simulation and Tennessee Eastman (TE) benchmark process, and comparative experimental analysis with state-of-the-art methods.

Related Organizations
Keywords

Spatial Analysis, Computer Simulation, Neural Networks, Computer

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!