Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/embc46...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Removing Noise from Extracellular Neural Recordings Using Fully Convolutional Denoising Autoencoders

Authors: Christodoulos Kechris; Alexandros Delitzas; Vasileios Matsoukas; Panagiotis C. Petrantonakis;

Removing Noise from Extracellular Neural Recordings Using Fully Convolutional Denoising Autoencoders

Abstract

Extracellular recordings are severely contaminated by a considerable amount of noise sources, rendering the denoising process an extremely challenging task that should be tackled for efficient spike sorting. To this end, we propose an end-to-end deep learning approach to the problem, utilizing a Fully Convolutional Denoising Autoencoder, which learns to produce a clean neuronal activity signal from a noisy multichannel input. The experimental results on simulated data show that our proposed method can improve significantly the quality of noise-corrupted neural signals, outperforming widely-used wavelet denoising techniques.

Accepted version to be published in the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2021)

Keywords

Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Signal-To-Noise Ratio, Machine Learning (cs.LG), Protein Transport, Cell Movement, Quantitative Biology - Neurons and Cognition, FOS: Biological sciences, FOS: Electrical engineering, electronic engineering, information engineering, Neurons and Cognition (q-bio.NC), Neural Networks, Computer, Electrical Engineering and Systems Science - Signal Processing, Noise

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green