Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Sensors Journal
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.5167/uzh...
Other literature type . 2024
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of Encoding Schemes on Ubiquitous Sensor Signal for Spiking Neural Network

Authors: Bian, Sizhen; Donati, Elisa; Magno, Michele;

Evaluation of Encoding Schemes on Ubiquitous Sensor Signal for Spiking Neural Network

Abstract

Spiking neural networks (SNNs), a brain-inspired computing paradigm, are emerging for their inference performance, particularly in terms of energy efficiency and latency attributed to the plasticity in signal processing. To deploy SNNs in ubiquitous computing systems, signal encoding of sensors is crucial for achieving high accuracy and robustness. Using inertial sensor readings for gym activity recognition as a case study, this work comprehensively evaluates four main encoding schemes and deploys the corresponding SNN on the neuromorphic processor Loihi2 for post-deployment encoding assessment. Rate encoding, time-to-first-spike encoding, binary encoding, and delta modulation are evaluated using metrics like average fire rate, signal-to-noise ratio, classification accuracy, robustness, and inference latency and energy. In this case study, the time-to-first-spike encoding required the lowest firing rate (2%) and achieved a comparative accuracy (89%), although it was the least robust scheme against error spikes (over 20% accuracy drop with 0.1 noisy spike rate). Rate encoding with optimal value-to-probability mapping achieved the highest accuracy (91.7%). Binary encoding provided a balance between information reconstruction and noise resistance. Multi-threshold delta modulation showed the best robustness, with only a 0.7% accuracy drop at a 0.1 noisy spike rate. This work serves researchers in selecting the best encoding scheme for SNN-based ubiquitous sensor signal processing, tailored to specific performance requirements.

Keywords

Signal Processing (eess.SP), 3105 Instrumentation, 2208 Electrical and Electronic Engineering, FOS: Electrical engineering, electronic engineering, information engineering, 570 Life sciences; biology, Electrical Engineering and Systems Science - Signal Processing, 10194 Institute of Neuroinformatics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green