Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Thin-Walled Structur...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Thin-Walled Structures
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data-driven CFRP machining performance prediction and optimization: Advances, challenges and future prospects

Authors: Ge, Jia; Zhang, Jiduo; Xu, Moran; Wu, Ming; Yao, Zequan; Fu, Guoyu; Zhang, Wenchang; +5 Authors

Data-driven CFRP machining performance prediction and optimization: Advances, challenges and future prospects

Abstract

The global drive towards net-zero has accelerated the adoption of carbon fibre reinforced polymers (CFRP) for lightweight structures in various sectors such as aerospace, automotive, energy and biomedical. Mechanical machining of CFRP is often necessary to meet dimensional or assembly-related requirements. However, significant challenges including surface defects (delamination, burr, surface roughness), rapid tool wear and material transition issues in drilling CFRP/metal stack, underscore the need for effective, automated process prediction/optimization for improved machining performance. Conventional physics-based models often fall short due to their reliance on extensive computational resources and inability to capture CFRP’s complex machining dynamics arising from thermo-mechanical load coupling and process uncertainties. To address these limitations, recent advancements in artificial intelligence (AI) offer promising, data-driven solutions that reduce reliance on domain-specific knowledge while delivering fast, accurate predictions by uncovering patterns within dataset. This provides a promising solution towards intelligent CFRP machining process with improved quality and efficiency. To date, there is a lack of comprehensive, up-to-date review of data-driven methods in CFRP machining process prediction/optimization. This review fills this gap and provides a critical analysis of data-driven methods in four key application settings: (i) machining process characteristics and surface quality/defects prediction; (ii) tool wear prediction; (iii) material transition recognition in CFRP/metal stacks machining; (iv) vision-based surface defects recognition. By presenting a state-of-the-art overview of advances, challenges and future research directions, this review highlights the transformative potential of data-driven methods in advancing intelligent CFRP machining within the manufacturing value chain.

Country
United Kingdom
Related Organizations
Keywords

machine learning, process optimization, /dk/atira/pure/subjectarea/asjc/2200/2215; name=Building and Construction, /dk/atira/pure/subjectarea/asjc/2200/2205; name=Civil and Structural Engineering, /dk/atira/pure/subjectarea/asjc/2200/2210; name=Mechanical Engineering, CFRP machining, data-driven method, defects prediction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid