
It is known that quantum gravitational effects due to virtual black holes and wormholes can exert an important influence by violating global symmetries. These processes have recently been investigated by Kallosh et al., who found, for the heterotic superstring theory, that there is a sufficient suppression of deleterious effects via the Euclidean action S E from the presence of higher-derivative terms occurring as a topological invariant, the Euler characteristic χ, regardless of the precise details of the underlying wormhole solution. Here, we consider this result further, arguing, in the absence of inflation, that there are no large wormholes in the heterotic superstring theory for which the wormhole action per se is large enough, topological suppression being the only possibility. The model-independent superstring axion may be susceptible to these corrections, because, as shown by Witten, it possesses a non-linearly realized, global U(1) symmetry, being a real scalar field coupled to the anomalous term [Formula: see text] from the outset, and they are relevant to the R-parity symmetry. Allowing for the unknown effect of the black holes, however, we conjecture that these quantum gravitational effects produce no observable consequences.
Applications of differential geometry to physics, heterotic superstring theory, quantum gravitational effects, global symmetries, String and superstring theories in gravitational theory, large wormholes, String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Applications of differential geometry to physics, heterotic superstring theory, quantum gravitational effects, global symmetries, String and superstring theories in gravitational theory, large wormholes, String and superstring theories; other extended objects (e.g., branes) in quantum field theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
