Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Orthogonal Spatial Binary Coding Method for High-Speed 3D Measurement

Authors: Haitao Wu; Yiping Cao; Yongbo Dai; Zhimi Wei;

Orthogonal Spatial Binary Coding Method for High-Speed 3D Measurement

Abstract

Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a large codewords orthogonal spatial binary coding method is proposed in this paper. By expanding spatial multiplexing from 1D to 2D orthogonal direction, it goes beyond the traditional 8 codewords to 27 codewords at three-level periodic division. In addition, a novel full-period connected domain segmentation technique based on local localization is proposed to avoid the time-consuming global iterative erosion and complex anomaly detection in traditional methods. For the decoding process, a purely spatial codewords recognition and a spatial-temporal hybrid codewords recognition methods are established to better suppress the percentage offset caused by static defocusing and dynamic motion, respectively. Obviating the need for intricate symbol recognition, the decoding process in our proposed method encompasses a straightforward analysis of statistical distribution. Building upon the development of special spatial binary coding, we have achieved a well-balance between low periodic division and large codewords for the first time. The experimental results verify the feasibility and validity of our proposed whole image processing method in both static and dynamic measurements.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!