
Summary: This paper presents a modification of one variant of Karmarkar's interior-point linear programming algorithm to Multiobjective Linear Programming (MOLP) problems. We show that by taking the variant known as the affine-scaling primal algorithm, generating locally-relevant scaling coefficients and applying them to the projected gradients produced by it, we can define what we refer to as anchoring points that then define cones in which we search for an optimal solution through interaction with the decision maker. Currently existing MOLP algorithms are simplex-based and make their progress toward the optimal solution by following the vertices of the constraints polytope. Since the proposed algorithm makes its progress through the interior of the constraints polytope, there is no need for vertex information and, therefore, the search for an optimal solution may prove less sensitive to problem size. We refer to the class of MOLP algorithms resulting from this variant as Affine-Scaling Interior Multiobjective Linear Programming (ASIMOLP) algorithms.
affine-scaling primal algorithm, interior-point linear programming, Linear programming, multicriteria decision making, multiobjective linear programming, Multi-objective and goal programming
affine-scaling primal algorithm, interior-point linear programming, Linear programming, multicriteria decision making, multiobjective linear programming, Multi-objective and goal programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
