
doi: 10.1002/rnc.6107
AbstractIn this article, an efficient hierarchical control framework is proposed to address the cooperation problems (e.g., consensus tracking, formation tracking, and time‐varying formation tracking) for the networked marine surface vehicles in the presence of external disturbances, actuator faults and failures. Based on this framework, several learning‐based hierarchical control algorithms are developed, involving an iterative learning‐based estimator and a local observer‐based finite‐time controller. The estimator is designed to achieve sufficiently precise estimation of the leader states through enough iterations, while the observer‐based finite‐time controller is used to observe and compensate the dynamic uncertainties as well as stabilize the error states in a finite time. By using the theories of Hurwitz, Schur, and Lyapunov stability, the sufficient conditions for guaranteeing the convergence of these learning‐based hierarchical control algorithms are derived. Finally, numerical simulations are performed on the Cyber‐Ships II to verify the effectiveness of the presented algorithms.
Hierarchical systems, Iterative learning control, Perturbations in control/observation systems, learning-based hierarchical control algorithm, Networked control, networked marine surface vehicles, actuator faults and failures, fault-tolerant cooperation
Hierarchical systems, Iterative learning control, Perturbations in control/observation systems, learning-based hierarchical control algorithm, Networked control, networked marine surface vehicles, actuator faults and failures, fault-tolerant cooperation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
