Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Robust and Nonlinear Control
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Learning‐based hierarchical control for fault‐tolerant cooperation of networked marine surface vehicles

Learning-based hierarchical control for fault-tolerant cooperation of networked marine surface vehicles
Authors: Chang‐Duo Liang; Ming‐Feng Ge; Leimin Wang; Zhi‐Wei Liu; Bo Li;

Learning‐based hierarchical control for fault‐tolerant cooperation of networked marine surface vehicles

Abstract

AbstractIn this article, an efficient hierarchical control framework is proposed to address the cooperation problems (e.g., consensus tracking, formation tracking, and time‐varying formation tracking) for the networked marine surface vehicles in the presence of external disturbances, actuator faults and failures. Based on this framework, several learning‐based hierarchical control algorithms are developed, involving an iterative learning‐based estimator and a local observer‐based finite‐time controller. The estimator is designed to achieve sufficiently precise estimation of the leader states through enough iterations, while the observer‐based finite‐time controller is used to observe and compensate the dynamic uncertainties as well as stabilize the error states in a finite time. By using the theories of Hurwitz, Schur, and Lyapunov stability, the sufficient conditions for guaranteeing the convergence of these learning‐based hierarchical control algorithms are derived. Finally, numerical simulations are performed on the Cyber‐Ships II to verify the effectiveness of the presented algorithms.

Related Organizations
Keywords

Hierarchical systems, Iterative learning control, Perturbations in control/observation systems, learning-based hierarchical control algorithm, Networked control, networked marine surface vehicles, actuator faults and failures, fault-tolerant cooperation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!