
Este documento presenta una demostración web que muestra las principales características del marco AutoGOAL. AutoGOAL es un marco en Python para encontrar automáticamente la mejor manera de resolver una tarea determinada. Ha sido diseñado principalmente para el aprendizaje automático de máquinas (AutoML), pero se puede utilizar en cualquier escenario en el que haya varias estrategias posibles disponibles para resolver una tarea computacional determinada. A diferencia de los marcos alternativos, AutoGOAL se puede aplicar sin problemas al procesamiento del lenguaje natural, así como a los problemas de clasificación estructurada. Este documento presenta una descripción general del diseño del marco y la evaluación experimental en varios problemas de aprendizaje automático, incluidos dos desafíos recientes de PNL. La demostración de software adjunta está disponible
Cet article présente une démonstration Web qui présente les principales caractéristiques du cadre AutoGOAL. AutoGOAL est un cadre en Python pour trouver automatiquement la meilleure façon de résoudre une tâche donnée. Il a été conçu principalement pour l'apprentissage automatique (AutoML), mais il peut être utilisé dans n'importe quel scénario où plusieurs stratégies possibles sont disponibles pour résoudre une tâche de calcul donnée. Contrairement aux cadres alternatifs, AutoGOAL peut être appliqué de manière transparente au traitement du langage naturel ainsi qu'aux problèmes de classification structurée. Cet article présente un aperçu de la conception et de l'évaluation expérimentale du cadre dans plusieurs problèmes d'apprentissage automatique, y compris deux défis récents de PNL. La démonstration logicielle qui l'accompagne est disponible
This paper introduces a web demo that showcases the main characteristics of the AutoGOAL framework.AutoGOAL is a framework in Python for automatically finding the best way to solve a given task.It has been designed mainly for automatic machine learning (AutoML) but it can be used in any scenario where several possible strategies are available to solve a given computational task.In contrast with alternative frameworks, AutoGOAL can be applied seamlessly to Natural Language Processing as well as structured classification problems.This paper presents an overview of the framework's design and experimental evaluation in several machine learning problems, including two recent NLP challenges.The accompanying software demo is available
تقدم هذه الورقة عرضًا توضيحيًا على الويب يعرض الخصائص الرئيسية لإطار عمل AutoGOAL .AutoGOAL هو إطار عمل في بايثون لإيجاد أفضل طريقة لحل مهمة معينة تلقائيًا. وقد تم تصميمه بشكل أساسي للتعلم الآلي (AutoML) ولكن يمكن استخدامه في أي سيناريو حيث تتوفر العديد من الاستراتيجيات الممكنة لحل مهمة حسابية معينة. على عكس الأطر البديلة، يمكن تطبيق AutoGOAL بسلاسة على معالجة اللغة الطبيعية بالإضافة إلى مشاكل التصنيف المنظمة. تقدم هذه الورقة نظرة عامة على تصميم الإطار والتقييم التجريبي في العديد من مشاكل التعلم الآلي، بما في ذلك اثنين من تحديات البرمجة اللغوية العصبية الأخيرة. يتوفر العرض التوضيحي للبرمجيات المصاحبة
Software engineering, Computer science, Learning with Noisy Labels in Machine Learning, Artificial Intelligence, Application of Genetic Programming in Machine Learning, Meta-Learning, Machine learning, Lenguajes y Sistemas Informáticos, Computer Science, Physical Sciences, AutoGOAL framework, Active Learning in Machine Learning Research, Natural Language Processing
Software engineering, Computer science, Learning with Noisy Labels in Machine Learning, Artificial Intelligence, Application of Genetic Programming in Machine Learning, Meta-Learning, Machine learning, Lenguajes y Sistemas Informáticos, Computer Science, Physical Sciences, AutoGOAL framework, Active Learning in Machine Learning Research, Natural Language Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
