Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Machine Learning in Communications and Networking
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AERO: Adaptive Edge-Cloud Orchestration With a Sub-1K-Parameter Forecasting Model

Authors: Berend J. D. Gort; Godfrey M. Kibalya; Angelos Antonopoulos;

AERO: Adaptive Edge-Cloud Orchestration With a Sub-1K-Parameter Forecasting Model

Abstract

Effective resource management in edge-cloud networks is crucial for meeting Quality of Service (QoS) requirements while minimizing operational costs. However, dynamic and fluctuating workloads pose significant challenges for accurate workload prediction and efficient resource allocation, particularly in resource-constrained edge environments. In this paper, we introduce AERO (Adaptive Edge-cloud Resource Orchestration), a novel lightweight forecasting model designed to address these challenges. AERO features an adaptive period detection mechanism that dynamically identifies dominant periodicities in multivariate workload data, allowing it to adjust to varying patterns and abrupt changes. With fewer than 1,000 parameters, AERO is highly suitable for deployment on edge devices with limited computational capacity. We formalize our approach through a comprehensive system model and extend an existing simulation framework with predictor modules to evaluate AERO’s performance in realistic cloud-edge environments. Our extensive evaluations on real-world cloud workload datasets demonstrate that AERO achieves comparable prediction accuracy to complex state-of-the-art models with millions of parameters, while significantly reducing model size and computational overhead. In addition, simulations show that AERO improves orchestration performance, reducing energy consumption and response times compared to existing proactive and reactive approaches. Our live deployment experiments further validate these findings, demonstrating that AERO consistently delivers superior performance. These results highlight AERO as an effective solution for improving resource management and reducing operational costs in dynamic cloud-edge environments.

Keywords

cloud-edge orchestration, adaptive resource management, Electronic computers. Computer science, dynamic periodicity detection, Telecommunication, lightweight forecasting models, Edge computing, QA75.5-76.95, TK5101-6720, workload prediction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Funded by