Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Qatar University Ins...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Information Sciences
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accurate parameters extraction of photovoltaic models with multi-strategy gaining-sharing knowledge-based algorithm

Authors: Guojiang Xiong; Zaiyu Gu; Ali Wagdy Mohamed; Houssem R.E.H. Bouchekara; Ponnuthurai Nagaratnam Suganthan;

Accurate parameters extraction of photovoltaic models with multi-strategy gaining-sharing knowledge-based algorithm

Abstract

The determination of photovoltaic (PV) model parameters has essential theoretical and practical significance for the performance evaluation, power monitoring, and power generation efficiency calculation of PV systems. In this paper, a multi-strategy gaining-sharing knowledge-based algorithm (MSGSK) is developed to determine these parameters. In our previous work, it has been demonstrated that gaining-sharing knowledge-based algorithm (GSK) is well suited for solving the concerned problem. To enhance its performance, a parameter adjustment strategy is developed to adjust the knowledge rate and knowledge ratio of GSK. Besides, a backtracking differential mutation strategy by combining the mutation scheme of differential evolution and the updating scheme of backtracking search optimization algorithm is developed to enrich the population diversity. Furthermore, a strategy selection mechanism is introduced to integrate the former two strategies to balance exploration and exploitation in different stages of the evolutionary process. The suggested MSGSK algorithm is applied to five PV cases (SDM, DDM, Photowatt-PW201, STM6-40/36, and STP6-120/36). From the experimental data, it can be observed that MSGSK extracts the PV model parameters more precisely than the basic GSK. Furthermore, it exhibits faster convergence speed and higher accuracy compared to other advanced algorithms found in the literature. 2024 Elsevier Inc. The authors would like to thank the editor and the reviewers for their constructive comments. This research was funded by the National Natural Science Foundation of China, grant number 52167007 and 52367006, the Natural Science Foundation of Guizhou Province, grant number QiankeheBasic-ZK[2022]General121, and the Innovation Foundation of Guizhou University Institute of Engineering Investigation & Design Co. Ltd. China, grant number GuiDaKanCha[2022]03. Scopus

Keywords

Parameter identification, Gaining-sharing knowledge-based algorithm, Photovoltaic cell, Differential evolution, 650, 004, Backtracking search optimization, Parameter adjustment strategy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green