Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of a combined heat sink and clamping method to mitigate weld distortion in low carbon steel using GMAW

Authors: Heri Wibowo; Slamet Karyono; Tri Adi Prasetya; Ahmad Fikrie; Agus Widyianto;

Evaluation of a combined heat sink and clamping method to mitigate weld distortion in low carbon steel using GMAW

Abstract

The mechanical strength and distortion management of GMAW-welded low-carbon steel (A36) joints are investigated in this work. GMAW is a combination of heat sinking and clamping procedures. Dimensional precision and structural reliability are compromised due to the substantial distortion caused during welding. To solve this problem, this research looks at a thermal-mechanical strategy that uses heat sinks and mechanical clamps in tandem when welding. Untreated joints (As-welded) and three different treatment variants (HS5-4C, HS27-4C, and HS27-6C) were tested in different experimental configurations. Using a 27 °C water-cooled heat sink and six steel clamps, the HS27-6C treatment significantly decreased longitudinal distortion, going from 6.7 mm (As-welded) to 0.85 mm, an astonishing 87% reduction. Mechanical testing showed that in all configurations, the tensile strength was approximately 500 MPa and that weld integrity was preserved since failures were in the base metal rather than the weld metal. Microstructural examination revealed an increase in Acicular Ferrite (AF) content in the weld metal for treated samples, particularly HS27-6C, which enhanced toughness, and microhardness tests verified consistent hardness values (e.g., weld metal (WM): ~200 HV, heat-affected zone (HAZ): ~170 HV, base metal (BM): ~150 HV). Mechanical restriction, in the form of clamps, reduces unequal expansion and contraction during solidification, and thermal management, accomplished by dispersing excess heat, is responsible for the method's efficacy. This integrated approach offers a realistic and cost-effective means of reducing distortion without sacrificing mechanical performance. This is particularly noteworthy in the structural, automotive, and manufacturing sectors, where precise control over dimensions is important

Related Organizations
Keywords

acicular ferrite, теплопровідники, thermal conductors, deformation, metal inert gas welding, голчастий ферит, характеристики матеріалу, material characteristics, деформація, зварювання металу в середовищі інертного газу

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold