Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Spiral - Imperial Co...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metalearning-Based Alternating Minimization Algorithm for Nonconvex Optimization

Authors: Jing-Yuan Xia; Shengxi Li; Jun-Jie Huang; Zhixiong Yang; Imad M. Jaimoukha; Deniz Gündüz;

Metalearning-Based Alternating Minimization Algorithm for Nonconvex Optimization

Abstract

In this article, we propose a novel solution for nonconvex problems of multiple variables, especially for those typically solved by an alternating minimization (AM) strategy that splits the original optimization problem into a set of subproblems corresponding to each variable and then iteratively optimizes each subproblem using a fixed updating rule. However, due to the intrinsic nonconvexity of the original optimization problem, the optimization can be trapped into a spurious local minimum even when each subproblem can be optimally solved at each iteration. Meanwhile, learning-based approaches, such as deep unfolding algorithms, have gained popularity for nonconvex optimization; however, they are highly limited by the availability of labeled data and insufficient explainability. To tackle these issues, we propose a meta-learning based alternating minimization (MLAM) method that aims to minimize a part of the global losses over iterations instead of carrying minimization on each subproblem, and it tends to learn an adaptive strategy to replace the handcrafted counterpart resulting in advance on superior performance. The proposed MLAM maintains the original algorithmic principle, providing certain interpretability. We evaluate the proposed method on two representative problems, namely, bilinear inverse problem: matrix completion and nonlinear problem: Gaussian mixture models. The experimental results validate the proposed approach outperforms AM-based methods.

Related Organizations
Keywords

Alternating minimization (AM); Deep learning; deep unfolding; gaussian mixture model (GMM); Iterative algorithms; matrix completion; meta-learning (ML).; Minimization; Neural networks; Optimization; Signal processing algorithms; Task analysis, 510

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 122
    download downloads 1
  • 122
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
31
Top 10%
Top 10%
Top 10%
122
1
Green