
doi: 10.1109/nas.2010.17
Distributed compression of correlated sources has been discussed much in wireless sensor networks, while the error-resilient implementation of this efficient coding strategy is one of the crucial issues for applications. In this paper, a symmetric Distributed Joint Source-Channel Coding (DJSCC) scheme is proposed by using Raptor codes for the independent channels case. The channel noise and the correlation of sources are considered simultaneously within one set of encoder and decoder. The symmetric structure of the proposed approach leads to more flexible and balanced rate allocation, and the rateless property of Raptor codes also guarantees tractable code rates and error correction. At last, the simulation results demonstrate that our scheme outperforms the existing LDPC-based scheme at low SNR.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
