Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Soft Computi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Soft Computing
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Bayesian regularized feed-forward neural network model for conductivity prediction of PS/MWCNT nanocomposite film coatings

Authors: Barış Demirbay; Duygu Bayram Kara; Şaziye Uğur;

A Bayesian regularized feed-forward neural network model for conductivity prediction of PS/MWCNT nanocomposite film coatings

Abstract

Abstract In our present work, a multi-layered feed-forward neural network (FFNN) model was designed and developed to predict electrical conductivity of multi-walled carbon nanotube (MWCNT) doped polystyrene (PS) latex nanocomposite (PS/MWCNT) film coatings using data set gathered from several conductivity measurements. Surfactant concentrations ( C s ), initiator concentrations ( C i ), molecular weights ( M P S ) and particle sizes of PS latex ( D P S ) together with MWCNT concentrations ( R M W C N T ) were introduced as inputs while electrical conductivity ( σ ) was assigned as a single output in FFNN topology. Network training was carried out using a Bayesian regulation backpropagation algorithm. Optimal geometry of the hidden layer was first studied to search out the best FFNN topology providing the most accurate performance results. Mean squared error, MSE, mean absolute error, MAE, root-mean-squared error, RMSE, determination of coefficient, R 2 , variance accounted for, VAF, and regression analysis were employed as performance assessment parameters for proposed network model. Correlation coefficients ( r ) of each input variable together with relative importance-based sensitivity analysis results have shown that R M W C N T is the most significant input variable strongly affecting the σ value of PS/MWCNT nanocomposite film coatings and training performance of the neural network. Mathematical explicit function has been derived to model electrical conductivity by using weights and bias values at each neuron found in FFNN development. All predicted conductivity values are in a very good agreement with measured conductivity values, showing robustness and reliability of suggested FFNN model and it can be effectively used to predict electrical conductivity of PS/MWCNT nanocomposite film coatings.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!