
pmid: 40221284
Prostate imaging reporting and data systems (PI-RADS) experiences considerable variability in inter-reader performance. Artificial Intelligence (AI) algorithms were suggested to provide comparable performance to PI-RADS for assessing prostate cancer (PCa) risk, albeit tested in highly selected cohorts. This study aimed to assess an AI algorithm for PCa detection in a clinical practice setting and simulate integration of the AI model with PI-RADS for assessment of indeterminate PI-RADS 3 lesions.This retrospective cohort study externally validated a biparametric MRI-based AI model for PCa detection in a consecutive cohort of patients who underwent prostate MRI and subsequently targeted and systematic prostate biopsy at a urology clinic between January 2022 and March 2024. Radiologist interpretations followed PI-RADS v2.1, and biopsies were conducted per PI-RADS scores. The previously developed AI model provided lesion segmentations and cancer probability maps which were compared to biopsy results. Additionally, we conducted a simulation to adjust biopsy thresholds for index PI-RADS category 3 studies, where AI predictions within these studies upgraded them to PI-RADS category 4.Among 144 patients with a median age of 70 years and PSA density of 0.17ng/mL/cc, AI's sensitivity for detection of PCa (86.6%) and clinically significant PCa (csPCa, 88.4%) was comparable to radiologists (85.7%, p=0.84, and 89.5%, p=0.80, respectively). The simulation combining radiologist and AI evaluations improved clinically significant PCa sensitivity by 5.8% (p=0.025). The combination of AI, PI-RADS and PSA density provided the best diagnostic performance for csPCa (area under the curve [AUC]=0.76).The AI algorithm demonstrated comparable PCa detection rates to PI-RADS. The combination of AI with radiologist interpretation improved sensitivity and could be instrumental in assessment of low-risk and indeterminate PI-RADS lesions. The role of AI in PCa screening remains to be further elucidated.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
