Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CAAI Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CAAI Transactions on Intelligence Technology
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An activated variable parameter gradient‐based neural network for time‐variant constrained quadratic programming and its applications

Authors: Guancheng Wang 0002; Zhihao Hao; Haisheng Li 0002; Bob Zhang 0001;

An activated variable parameter gradient‐based neural network for time‐variant constrained quadratic programming and its applications

Abstract

Abstract This study proposes a novel gradient‐based neural network model with an activated variable parameter, named as the activated variable parameter gradient‐based neural network (AVPGNN) model, to solve time‐varying constrained quadratic programming (TVCQP) problems. Compared with the existing models, the AVPGNN model has the following advantages: (1) avoids the matrix inverse, which can significantly reduce the computing complexity; (2) introduces the time‐derivative of the time‐varying parameters in the TVCQP problem by adding an activated variable parameter, enabling the AVPGNN model to achieve a predictive calculation that achieves zero residual error in theory; (3) adopts the activation function to accelerate the convergence rate. To solve the TVCQP problem with the AVPGNN model, the TVCQP problem is transformed into a non‐linear equation with a non‐linear compensation problem function based on the Karush Kuhn Tucker conditions. Then, a variable parameter with an activation function is employed to design the AVPGNN model. The accuracy and convergence rate of the AVPGNN model are rigorously analysed in theory. Furthermore, numerical experiments are also executed to demonstrate the effectiveness and superiority of the proposed model. Moreover, to explore the feasibility of the AVPGNN model, applications to the motion planning of a robotic manipulator and the portfolio selection of marketed securities are illustrated.

Related Organizations
Keywords

QA76.75-76.765, optimisation, mathematics computing, computational intelligence, Computational linguistics. Natural language processing, Computer software, P98-98.5

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
gold