
AbstractThe Lovász local lemma (LLL) is a keystone principle in probability theory, guaranteeing the existence of configurations which avoid a collection of “bad” events which are mostly independent and have low probability. A seminal algorithm of Moser and Tardos (J. ACM, 2010, 57, 11) (which we call the MT algorithm) gives nearly‐automatic randomized algorithms for most constructions based on the LLL. However, deterministic algorithms have lagged behind. We address three specific shortcomings of the prior deterministic algorithms. First, our algorithm applies to the LLL criterion of Shearer (Combinatorica, 1985, 5, 241–245); this is more powerful than alternate LLL criteria and also leads to cleaner and more legible bounds. Second, we provide parallel algorithms with much greater flexibility. Third, we provide a derandomized version of the MT‐distribution, that is, the distribution of the variables at the termination of the MT algorithm. We show applications to non‐repetitive vertex coloring, independent transversals, strong coloring, and other problems.
FOS: Computer and information sciences, independent transversal, Lovász local lemma, Computer Science - Data Structures and Algorithms, LLL, Data Structures and Algorithms (cs.DS), strong coloring, Computer science, derandomization, Operations research, mathematical programming
FOS: Computer and information sciences, independent transversal, Lovász local lemma, Computer Science - Data Structures and Algorithms, LLL, Data Structures and Algorithms (cs.DS), strong coloring, Computer science, derandomization, Operations research, mathematical programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
