
For entropy-coded H.264 video frames, a transmission error in a codeword will not only affect the underlying codeword but also may affect subsequent codewords, resulting in a great degradation of the received video frames. In this study, an error resilient coding scheme for H.264 video transmission is proposed. At the encoder, for an H.264 I frame, the important data for each macroblock (MB) are extracted and embedded into the next frame by the proposed MB-interleaving slice-based data embedding scheme for I frames. For an H.264 P frame, two types of important data for each MB are extracted and embedded into the next frame by the proposed MB-interleaving slice-based data embedding scheme for P frames. At the decoder, if the important data for a corrupted MB can be correctly extracted, the extracted important data for the corrupted MB will facilitate the employed error concealment scheme to conceal the corrupted MB; otherwise, the employed error concealment scheme is used to conceal the corrupted MB. Based on the simulation results obtained in this study, the proposed scheme can recover high-quality H.264 video frames from the corresponding corrupted video frames up to a video packet loss rate of 20%.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
