Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Resources Conservati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Resources Conservation and Recycling
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An inexact modeling approach for supporting water resources allocation under natural and social complexities in a border city of China and Myanmar

Authors: Dongni Chen; Yanpeng Cai; Xuan Wang; Chunhui Li; Xinan Yin; Qiang Liu;

An inexact modeling approach for supporting water resources allocation under natural and social complexities in a border city of China and Myanmar

Abstract

Abstract In this paper, an interval two-stage fuzzy credibility constraint programming (ITSFCCP) method is proposed to deal with multiple uncertainties that can be expressed as fuzzy sets, discrete intervals and probability distributions, which can be used for effectively reflect natural and social complexities of relevant decision-making processes. Lincang city of Yunnan province, which is located in the southwest border of China, is employed as the demonstrative case. It is a frontier window and an important channel for China to face the "radiation center" of Southeast and South Asia. Also, it is the intersection of the Tropic of Cancer and the Geographic Water Distribution Line between the Pacific and Indian Oceans. The city's water resources system is particularly unique due to its connection with Myanmar. Considering multiple uncertainties and complexities of the existing water resources system in the city, ITSFCCP is developed to optimize the allocation of water resources. The objective function of the model is the maximization of economic benefits of the water resources system. Fuzzy sets, discrete intervals and probability distribution were introduced to represent the multiple uncertainties associated with the natural and social complexities. Credibility levels were adopted to solve the complexity of multi-ethnic human society in Lincang. The results showed that the model could effectively deal with the uncertainties and complexities of Lincang's water resources system, and reflect the trade-offs between the system benefits and risks.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!