Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Social Science & Med...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Social Science & Medicine
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Social Science & Medicine
Article . 2022
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Health behavior homophily can mitigate the spread of infectious diseases in small-world networks

Authors: Hendrik Nunner; Vincent Buskens; Alexandra Teslya; Mirjam Kretzschmar;

Health behavior homophily can mitigate the spread of infectious diseases in small-world networks

Abstract

Research has repeatedly shown that the spread of infectious diseases is influenced by properties of our social networks. Small-world like structures with densely connected clusters bridged by only a few connections, for example, are not only known to diminish disease spread, but also to increase the chance for a disease to spread to any part of the network. Clusters composed of individuals who show similar reactions to avoid infections (health behavior homophily), however, might change the effect of such clusters on disease spread. To study the combined effect of health behavior homophily and small-world network properties on disease spread, we extend a previously developed ego-centered network formation model and agent-based simulation. Based on more than 80,000 simulated epidemics on generated networks varying in clustering and homophily, as well as diseases varying in severity and infectivity, we predict that the existence of health behavior homophilous clusters reduce the number of infections, lower peak size, and flatten the curve of active cases. That is because agents perceiving higher risks of infections can protect their cluster from infections comparatively quickly by severing only a few bridging ties. A comparison with epidemics in static network structures shows that the incapability to act upon risk perceptions and the low connectivity between clusters in static networks lead to diametrically opposed effects with comparatively large epidemics and prolonged epidemics. These finding suggest that micro-level behavioral adaptation to health risks mitigate macro-level disease spread to an extent that is not captured by static network models of disease spread. Furthermore, this mechanism can be used to design information campaigns targeting proxies for groups with lower risk perception.

Keywords

Risk perception, Research Support, Non-U.S. Gov't, Agent-based simulations, Health Behavior, Epidemics/prevention & control, Adaptive networks, Communicable Diseases/epidemiology, Homophily, Communicable Diseases, Health(social science), Social Networking, Small-world networks, History and Philosophy of Science, SDG 3 - Good Health and Well-being, Journal Article, Infectious diseases, Cluster Analysis, Humans, Health behavior, Epidemics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green
hybrid