Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Wireless Communications
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC 0
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Relay Incentive Mechanisms Using Wireless Power Transfer in Non-Cooperative Networks

Authors: Winston Hurst; Yasamin Mostofi;

Relay Incentive Mechanisms Using Wireless Power Transfer in Non-Cooperative Networks

Abstract

This paper studies the use of a multi-attribute auction in a communication system to bring about efficient relaying in a non-cooperative setting. We consider a system where a source seeks to offload data to an access point (AP) while balancing both the timeliness and energy-efficiency of the transmission. A deep fade in the communication channel (due to, e.g., a line-of-sight blockage) makes direct communication costly, and the source may alternatively rely on non-cooperative UEs to act as relays. We propose a multi-attribute auction to select a UE and to determine the duration and power of the transmission, with payments to the UE taking the form of energy sent via wireless power transfer (WPT). The quality of the channel from a UE to the AP constitutes private information, and bids consist of a transmission time and transmission power. We show that under a second-preferred-offer auction, truthful bidding by all candidate UEs forms a Nash Equilibrium. However, this auction is not incentive compatible, and we present a modified auction in which truthful bidding is in fact a dominant strategy. Extensive numerical experimentation illustrates the efficacy of our approach, which we compare to a cooperative baseline. We demonstrate that with as few as two candidates, our improved mechanism leads to as much as a 76% reduction in energy consumption, and that with as few as three candidates, the transmission time decreases by as much as 55%. Further, we see that as the number of candidates increases, the performance of our mechanism approaches that of the cooperative baseline. Overall, our findings highlight the potential of multi-attribute auctions to enhance the efficiency of data transfer in non-cooperative settings.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Computer Science and Game Theory, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Computer Science and Game Theory (cs.GT)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green