Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Synthetic Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Synthetic Biology
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Synthetic Biology
Article . 2023
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2023
Data sources: Research.fi
ACS Synthetic Biology
Article . 2023
Data sources: Pure VTT Finland
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plasmid Copy Number Engineering Accelerates Fungal Polyketide Discovery upon Unnatural Polyketide Biosynthesis

Authors: Li, Ye; Lin, Pingxin; Lu, Xuan; Yan, Hao; Wei, Huan; Liu, Chunli; Liu, Xiuxia; +4 Authors

Plasmid Copy Number Engineering Accelerates Fungal Polyketide Discovery upon Unnatural Polyketide Biosynthesis

Abstract

Saccharomyces cerevisiae has been extensively used as a convenient synthetic biology chassis to reconstitute fungal polyketide biosynthetic pathways. Despite progress in refactoring these pathways for expression and optimization of the yeast production host by metabolic engineering, product yields often remain unsatisfactory. Such problems are especially acute when synthetic biological production is used for bioprospecting via genome mining or when chimeric fungal polyketide synthases (PKSs) are employed to produce novel bioactive compounds. In this work, we demonstrate that empirically balancing the expression levels of the two collaborating PKS subunits that afford benzenediol lactone (BDL)-type fungal polyketides is a facile strategy to improve the product yields. This is accomplished by systematically and independently altering the copy numbers of the two plasmids that express these PKS subunits. We applied this plasmid copy number engineering strategy to two orphan PKSs from genome mining where the yields of the presumed BDL products in S. cerevisiae were far too low for product isolation. This optimization resulted in product yield improvements of up to 10-fold, allowing for the successful isolation and structure elucidation of new BDL analogues. Heterocombinations of these PKS subunits from genome mining with those from previously identified BDL pathways led to the combinatorial biosynthesis of several additional novel BDL-type polyketides.

Related Organizations
Keywords

Plasmids/genetics, Polyketides/metabolism, Polyketide Synthases/metabolism, DNA Copy Number Variations, polyketide synthase, ta1182, Saccharomyces cerevisiae, plasmid copy number, Saccharomyces cerevisiae/genetics, Lactones, fungal polyketide, Polyketides, combinatorial biosynthesis, synthetic biology, Polyketide Synthases, Lactones/metabolism, Plasmids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!