Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioengineering &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioengineering & Translational Medicine
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicting the onset of preeclampsia by longitudinal monitoring of metabolic changes throughout pregnancy with Raman spectroscopy

Authors: Saman Ghazvini; Saji Uthaman; Lilly Synan; Eugene C. Lin; Soumik Sarkar; Mark K. Santillan; Donna A. Santillan; +1 Authors

Predicting the onset of preeclampsia by longitudinal monitoring of metabolic changes throughout pregnancy with Raman spectroscopy

Abstract

AbstractPreeclampsia is a life‐threatening pregnancy disorder. Current clinical assays cannot predict the onset of preeclampsia until the late 2nd trimester, which often leads to poor maternal and neonatal outcomes. Here we show that Raman spectroscopy combined with machine learning in pregnant patient plasma enables rapid, highly sensitive maternal metabolome screening that predicts preeclampsia as early as the 1st trimester with >82% accuracy. We identified 12, 15 and 17 statistically significant metabolites in the 1st, 2nd and 3rd trimesters, respectively. Metabolic pathway analysis shows multiple pathways corresponding to amino acids, fatty acids, retinol, and sugars are enriched in the preeclamptic cohort relative to a healthy pregnancy. Leveraging Pearson's correlation analysis, we show for the first time with Raman Spectroscopy that metabolites are associated with several clinical factors, including patients' body mass index, gestational age at delivery, history of preeclampsia, and severity of preeclampsia. We also show that protein quantification alone of proinflammatory cytokines and clinically relevant angiogenic markers are inadequate in identifying at‐risk patients. Our findings demonstrate that Raman spectroscopy is a powerful tool that may complement current clinical assays in early diagnosis and in the prognosis of the severity of preeclampsia to ultimately enable comprehensive prenatal care for all patients.

Keywords

DegreeDisciplines::Engineering::Biomedical Engineering and Bioengineering::Biological Engineering, 610, RM1-950, preeclampsia, Metabolism, Chemical engineering, Raman spectroscopy, TP155-156, patient, pregnancy, Therapeutics. Pharmacology, metabolism, TP248.13-248.65, Research Articles, Biotechnology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
gold