Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ultrasound in Medici...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ultrasound in Medicine & Biology
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine Learning Algorithm Detection of Confluent B-Lines

Authors: Cristiana Baloescu; Agnieszka A. Rucki; Alvin Chen; Mohsen Zahiri; Goutam Ghoshal; Jing Wang; Rita Chew; +8 Authors

Machine Learning Algorithm Detection of Confluent B-Lines

Abstract

B-lines are a ring-down artifact of lung ultrasound that arise with increased alveolar water in conditions such as pulmonary edema and infectious pneumonitis. Confluent B-line presence may signify a different level of pathology compared with single B-lines. Existing algorithms aimed at B-line counting do not distinguish between single and confluent B-lines. The objective of this study was to test a machine learning algorithm for confluent B-line identification.This study used a subset of 416 clips from 157 subjects, previously acquired in a prospective study enrolling adults with shortness of breath at two academic medical centers, using a hand-held tablet and a 14-zone protocol. After exclusions, random sampling generated a total of 416 clips (146 curvilinear, 150 sector and 120 linear) for review. A group of five experts in point-of-care ultrasound blindly evaluated the clips for presence/absence of confluent B-lines. Ground truth was defined as majority agreement among the experts and used for comparison with the algorithm.Confluent B-lines were present in 206 of 416 clips (49.5%). Sensitivity and specificity of confluent B-line detection by algorithm compared with expert determination were 83% (95% confidence interval [CI]: 0.77-0.88) and 92% (95% CI: 0.88-0.96). Sensitivity and specificity did not statistically differ between transducers. Agreement between algorithm and expert for confluent B-lines measured by unweighted κ was 0.75 (95% CI: 0.69-0.81) for the overall set.The confluent B-line detection algorithm had high sensitivity and specificity for detection of confluent B-lines in lung ultrasound point-of-care clips, compared with expert determination.

Keywords

Adult, Machine Learning, Humans, Pulmonary Edema, Prospective Studies, Lung, Algorithms, Ultrasonography

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!