Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical Methods in Engineering
Article . 2025 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptive Coupling of Peridynamic and Classical Continuum Mechanical Models Driven by Broken Bond/Strength Criteria for Structural Dynamic Failure

Adaptive coupling of peridynamic and classical continuum mechanical models driven by broken bond/strength criteria for structural dynamic failure
Authors: JiuYi Li; ShanKun Liu; Fei Han; Yong Mei; YunHou Sun; FengJun Zhou;

Adaptive Coupling of Peridynamic and Classical Continuum Mechanical Models Driven by Broken Bond/Strength Criteria for Structural Dynamic Failure

Abstract

ABSTRACTPeridynamics (PD) is widely used to simulate structural failure. However, PD models are time consuming. To improve the computational efficiency, we developed an adaptive coupling model between PD and classical continuum mechanics (PD‐CCM) based on the Morphing method, driven by the broken bond or strength criteria. We derived the dynamic equation of the coupled models from the Lagrangian equation and then the discretized finite element formulation. An adaptive coupling strategy was introduced by determining the key position using the broken bond or strength criteria. The PD subdomain was expanded by altering the value of the Morphing function around the key position. Additionally, the PD subdomain was meshed by discrete elements (DEs) (i.e., nodes were not shared between elements), allowing the crack to propagate freely along the boundary of the DE. The remaining subdomains were meshed by continuous elements (CEs). Following the PD subdomain expansion, the CEs were converted into DEs, and new nodes were inserted. The displacement vector and mass matrix were reconfigured to ensure calculation consistency throughout the solving process. Furthermore, the relationship between the expansion radius of the PD subdomain and the speed of crack propagation was also discussed. Finally, the effectiveness, efficiency, and accuracy of the proposed model were verified via three two‐dimensional numerical examples.

Related Organizations
Keywords

Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Finite element methods applied to problems in solid mechanics, Brittle fracture, Peridynamics, finite element method, morphing coupling, peridynamics, crack propagation, Lagrangian equation, discrete element method, Computer Science - Computational Engineering, Finance, and Science

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green