
handle: 11572/437980
In this paper, we propose a convolutional neural network, which is based on down sampling followed by up sampling architecture for the purpose of road extraction from aerial images. Our model consists of convolutional layers only. The proposed encoder-decoder structure allows our network to retain boundary information, which is a critical feature for road identification. This feature is usually lost when dealing with other CNN models. Our design is also less complex in terms of depth, number of parameters, and memory size. It, therefore, uses fewer computer resources in both training and during execution. Experimental results on Massachusetts roads dataset demonstrate that the proposed architecture, although less complex, competes with the state-of-the-art proposed approaches in terms of precision, recall, and accuracy.
aerial images; Convolutional neural networks (CNN); decoder; down-sampling; encoder; road network extraction; up-sampling, 004
aerial images; Convolutional neural networks (CNN); decoder; down-sampling; encoder; road network extraction; up-sampling, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
