
The cognitive beamforming problems are naturally formulated as indefinite quadratic (nonconvex) optimization programs. The typical methods for solving such optimization problems are to transform them into convex semi-definite programs (SDPs) with additional rank-one (nonconvex and discontinuous) constraints. The rank-one constraints are then dropped to obtain solvable SDP relaxed problems and randomization techniques are employed for seeking the feasible solutions to the original nonconvex optimization problems. In many practical cases, these approaches fail to deliver satisfactory solutions, i.e., their solutions are very far from the optimal ones. In contrast, in this paper the rank-one constraints are equivalently expressed as reverse convex constraints and are incorporated into the optimization problems. Then, we propose an efficient iterative algorithm for solving the nonsmooth reverse convex optimization problems. Our simulations show that our proposed approach yields nearly global optimal solutions with much less computational load as compared to the conventional one.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
