
arXiv: 2107.05816
We study nonconvex homogeneous quadratically constrained quadratic optimization with one or two constraints, denoted by (QQ1) and (QQ2), respectively. (QQ2) contains (QQ1), trust region subproblem (TRS) and ellipsoid regularized total least squares problem as special cases. It is known that there is a necessary and sufficient optimality condition for the global minimizer of (QQ2). In this paper, we first show that any local minimizer of (QQ1) is globally optimal. Unlike its special case (TRS) with at most one local non-global minimizer, (QQ2) may have infinitely many local non-global minimizers. At any local non-global minimizer of (QQ2), both linearly independent constraint qualification and strict complementary condition hold, and the Hessian of the Lagrangian has exactly one negative eigenvalue. As a main contribution, we prove that the standard second-order sufficient optimality condition for any strict local non-global minimizer of (QQ2) remains necessary. Applications and the impossibility of further extension are discussed.
22 pages
Optimization and Control (math.OC), FOS: Mathematics, 90C46, 90C26, 90C20, 90C32, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, 90C46, 90C26, 90C20, 90C32, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
