Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-delay joint source-channel coding with side information at the decoder

Authors: Mojtaba Vaezi; Alice Combernoux; Fabrice Labeau;

Low-delay joint source-channel coding with side information at the decoder

Abstract

This paper deals with distributed joint source-channel coding (DJSCC) of analog signals over impulsive noise channel. DJSCC, and distributed source coding (DSC), of analog sources is commonly realized by quantizing the source and using binary channel codes for coding, i.e., binning is realized in the binary domain. To achieve lower delay, we perform binning in the analog domain. Specifically, a single discrete Fourier transform (DFT) code is used both for compression and protection of signal. To do so, parity samples, with respect to a good systematic DFT code, are generated, quantized, and transmitted over a noisy channel. To improve the decoding performance, we leverage subspace-based error correction. The performance of the proposed system is analyzed for Gauss-Markov sources over impulsive noise channel.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!