Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CAAI Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CAAI Transactions on Intelligence Technology
Article . 2025 . Peer-reviewed
License: CC BY ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clustering‐based recommendation method with enhanced grasshopper optimisation algorithm

Authors: Zihao Zhao; Yingchun Xia; Wenjun Xu; Hui Yu; Shuai Yang; Cheng Chen; Xiaohui Yuan; +3 Authors

Clustering‐based recommendation method with enhanced grasshopper optimisation algorithm

Abstract

Abstract In the era of big data, personalised recommendation systems are essential for enhancing user engagement and driving business growth. However, traditional recommendation algorithms, such as collaborative filtering, face significant challenges due to data sparsity, algorithm scalability, and the difficulty of adapting to dynamic user preferences. These limitations hinder the ability of systems to provide highly accurate and personalised recommendations. To address these challenges, this paper proposes a clustering‐based recommendation method that integrates an enhanced Grasshopper Optimisation Algorithm (GOA), termed LCGOA, to improve the accuracy and efficiency of recommendation systems by optimising cluster centroids in a dynamic environment. By combining the K‐means algorithm with the enhanced GOA, which incorporates a Lévy flight mechanism and multi‐strategy co‐evolution, our method overcomes the centroid sensitivity issue, a key limitation in traditional clustering techniques. Experimental results across multiple datasets show that the proposed LCGOA‐based method significantly outperforms conventional recommendation algorithms in terms of recommendation accuracy, offering more relevant content to users and driving greater customer satisfaction and business growth.

Related Organizations
Keywords

QA76.75-76.765, Lévy flight, collaborative recommendation, K‐means clustering, Computational linguistics. Natural language processing, Computer software, P98-98.5, Grasshopper Optimization Algorithm (GOA)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold