
handle: 20.500.11824/850
Estimation of distribution algorithms have already demonstrated their utility when solving a broad range of combinatorial problems. However, there is still room for methodological improvements when approaching constrained type problems. The great majority of works in the literature implement external repairing or penalty schemes, or use ad-hoc sampling methods in order to avoid unfeasible solutions. In this work, we present a new way to develop EDAs for this type of problems by implementing distance-based exponential probability models defined exclusively on the set of feasible solutions. In order to illustrate this procedure, we take the 2-partition balanced Graph Partitioning Problem as a case of study, and design efficient learning and sampling methods in order to use these distance-based probability models in EDAs.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
