
Abstract In this study, FeMnAlNi shape memory alloys are demonstrated to experience room temperature (RT) aging, which manifests itself as a gradual increase in critical transformation stress with time when the sample is kept in a stress-free condition. This effect is sufficient to create superelasticity in the solution treated condition, which does not normally show superelasticity soon after heat treatment. This phenomenon is due to the nucleation and coarsening of nanoprecipitates at room temperature despite the high melting point of the alloy. RT aging also influenced precipitation hardened FeMnAlNi samples by causing an increase in stress hysteresis and hardening rate.
мартенситные превращения, сверхэластичность, естественное старение, сплавы с эффектом памяти формы
мартенситные превращения, сверхэластичность, естественное старение, сплавы с эффектом памяти формы
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
