Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physica A Statistica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physica A Statistical Mechanics and its Applications
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uncovering dynamic behaviors underlying experimental oil–water two-phase flow based on dynamic segmentation algorithm

Authors: Zhong-Ke Gao; Ning-De Jin;

Uncovering dynamic behaviors underlying experimental oil–water two-phase flow based on dynamic segmentation algorithm

Abstract

Abstract Characterizing complex dynamic behaviors arising from various inclined oil–water two-phase flow patterns is a challenging problem in the fields of nonlinear dynamics and fluid mechanics. We systematically carried out inclined oil–water two-phase flow experiments for measuring the time series conductance fluctuating signals of different flow patterns. We using the dynamic segmentation algorithm incorporating with phase space reconstruction analyze the measured experimental signals to uncover the dynamic behaviors underlying different flow patterns. Specifically, given a time series from a two-phase flow, we move a sliding pointer over the time series and for each position of the pointer we calculate the dynamic difference measure of the phase space orbits generated from the segment to the left and to the right of the pointer. A number of experimental signals under different flow conditions are investigated in order to reveal the dynamical characteristics of inclined oil–water flows. The results indicate that the heterogeneity of dynamic difference measure series is sensitive to the transition among different flow patterns and the standard deviation of dynamic difference measure series can yield quantitative insights into the nonlinear dynamics of the two-phase flow. These properties render the dynamic segmentation algorithm-based approach particularly useful for uncovering the dynamic behaviors of inclined oil–water two-phase flows.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!