Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Freibu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical Oral Investigations
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2024
Data sources: Radboud Repository
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advancements in diagnosing oral potentially malignant disorders: leveraging Vision transformers for multi-class detection

Authors: Vinayahalingam, Shankeeth; van Nistelrooij, Niels; Rothweiler, René; Tel, Alessandro; Verhoeven, Tim; Tröltzsch, Daniel; Kesting, Marco R.; +4 Authors

Advancements in diagnosing oral potentially malignant disorders: leveraging Vision transformers for multi-class detection

Abstract

Abstract Objectives Diagnosing oral potentially malignant disorders (OPMD) is critical to prevent oral cancer. This study aims to automatically detect and classify the most common pre-malignant oral lesions, such as leukoplakia and oral lichen planus (OLP), and distinguish them from oral squamous cell carcinomas (OSCC) and healthy oral mucosa on clinical photographs using vision transformers. Methods 4,161 photographs of healthy mucosa, leukoplakia, OLP, and OSCC were included. Findings were annotated pixel-wise and reviewed by three clinicians. The photographs were divided into 3,337 for training and validation and 824 for testing. The training and validation images were further divided into five folds with stratification. A Mask R-CNN with a Swin Transformer was trained five times with cross-validation, and the held-out test split was used to evaluate the model performance. The precision, F1-score, sensitivity, specificity, and accuracy were calculated. The area under the receiver operating characteristics curve (AUC) and the confusion matrix of the most effective model were presented. Results The detection of OSCC with the employed model yielded an F1 of 0.852 and AUC of 0.974. The detection of OLP had an F1 of 0.825 and AUC of 0.948. For leukoplakia the F1 was 0.796 and the AUC was 0.938. Conclusions OSCC were effectively detected with the employed model, whereas the detection of OLP and leukoplakia was moderately effective. Clinical relevance Oral cancer is often detected in advanced stages. The demonstrated technology may support the detection and observation of OPMD to lower the disease burden and identify malignant oral cavity lesions earlier.

Keywords

Male, Female [MeSH] ; Malignant transformation ; Humans [MeSH] ; Photography, Dental [MeSH] ; Diagnosis, Differential [MeSH] ; Artificial Intelligence ; Carcinoma, Squamous Cell/diagnosis [MeSH] ; Leukoplakia, Oral/diagnosis [MeSH] ; Precancerous Conditions/diagnosis [MeSH] ; Oral squamous cell carcinoma ; Sensitivity and Specificity [MeSH] ; Oral lichen planus ; Male [MeSH] ; Lichen Planus, Oral/diagnosis [MeSH] ; Research ; Image Interpretation, Computer-Assisted/methods [MeSH] ; Mouth Neoplasms/diagnosis [MeSH] ; Leukoplakia ; Photography [MeSH] ; Deep learning, Oral and Maxillofacial Surgery - Radboud University Medical Center, Research, 610, Deep learning, Sensitivity and Specificity, Diagnosis, Differential, Oral squamous cell carcinoma, Malignant transformation, Artificial Intelligence, Photography, Dental, Oral lichen planus, Image Interpretation, Computer-Assisted, Photography, Carcinoma, Squamous Cell, Humans, Mouth Neoplasms, Female, Leukoplakia, Oral, Precancerous Conditions, Leukoplakia, Lichen Planus, Oral

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities
Cancer Research