Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Сельскохозяйственные...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modified SLAM for Agricultural Robot Navigation

Authors: N. V. Gapon; V. V. Voronin; D. V. Rudoy; M. M. Zhdanova;

Modified SLAM for Agricultural Robot Navigation

Abstract

The study proposes a novel method for reconstructing missing regions in depth maps, aimed at improving the accuracy of autonomous navigation in agricultural robotic systems. (Research purpose) The primary objective is to develop a method capable of compensating for data loss in depth maps, thereby improving the performance of Simultaneous Localization and Mapping (SLAM) systems. (Materials and methods) The depth map reconstruction method consists of three main stages: computation of the anisotropic gradient; identification of similar blocks based on a novel similarity criterion; and merging of the detected blocks using a neural network architecture composed of an encoder, a fusion layer, and a decoder. The method was tested using the Rosario dataset, which includes scenarios representative of complex agricultural environments. (Results and discussion) The proposed depth map reconstruction method demonstrates a significant improvement in quality metrics. Specifically, Root Mean Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM) improved by 20–30 percent compared to the existing techniques. The method preserves the structure and texture features of the reconstructed regions, enabling accurate restoration of large areas with missing pixel data. To evaluate the impact on SLAM performance, the Stereo Multi-State Constraint Kalman Filter (S-MSCKF) algorithm was employed. Quantitative analysis of Absolute Trajectory Error (ATE) and mean RMSE was conducted both before and after applying the depth map reconstruction. The results show a reduction in Absolute Trajectory Error from 0.62 meters to 0.25 meters, and a decrease in Root Mean Square Error from 0.85 meters to 0.39 meters. (Conclusions) The proposed method substantially enhances SLAM system accuracy, particularly in challenging agricultural environments, characterized by uneven terrain, variable lighting conditions, and long-distance navigation. Its robust performance suggests strong potential for large-scale integration into autonomous agricultural machinery, contributing to improved reliability, operational efficiency, and safety in robotic field operations.

Keywords

anisotropic gradient, neural network, S, TJ1-1570, Agriculture, Mechanical engineering and machinery, agricultural robot, simultaneous localization and mapping system (slam), depth map, depth map reconstruction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold