
Bistatic synthetic aperture radar (BiSAR) is an extended and complementary observation method to conventional monostatic SAR remote sensing. When high range and azimuth resolution are required in BiSAR, the transmitting platform, i.e., the LEO satellite, should work in the spotlight or sliding spotlight mode, which means a wide bandwidth Chirp signal is transmitted, and the targets are illuminated for a long enough time as well. In order to reduce the sampling frequency in the receiving system and improve the efficiency of the focusing procedure for this BiSAR configuration, the echoes should be dechirp received. A bistatic extended frequency scaling algorithm (Bi-EFSA) is proposed in this paper to deal with the dechirp received bistatic SAR echoes. The first step of Bi-EFSA is the range walk correction in the 2-D time domain, which reduces the space variance of the range curvatures and removals the serious coupling between range and azimuth caused by the high squint angle. After that, the range compression is achieved by secondary range compression (SRC) and bulk shift. Then, the space variance of the azimuth frequency modulation rate, introduced by the range walk correction step, is corrected by implementing the azimuth nonlinear chirp scaling (ANCS) operation. Following this, the focused results in the range frequency and azimuth time domain are obtained by the azimuth compression. The point targets and extended-scene simulations validate the effectiveness of the proposed algorithm.
bistatic extended frequency scaling algorithm, Bistatic SAR, high squint angle, dechirp received, Electrical engineering. Electronics. Nuclear engineering, azimuth nonlinear chirp scaling, TK1-9971
bistatic extended frequency scaling algorithm, Bistatic SAR, high squint angle, dechirp received, Electrical engineering. Electronics. Nuclear engineering, azimuth nonlinear chirp scaling, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
