Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimized Theta-Join Processing

Authors: Weise, Julian; Schmidl, Sebastian; Papenbrock, Thorsten;

Optimized Theta-Join Processing

Abstract

The Theta-Join is a powerful operation to connect tuples of different relational tables based on arbitrary conditions. The operation is a fundamental requirement for many data-driven use cases, such as data cleaning, consistency checking, and hypothesis testing. However, processing theta-joins without equality predicates is an expensive operation, because basically all database management systems (DBMSs) translate theta-joins into a Cartesian product with a post-filter for non-matching tuple pairs. This seems to be necessary, because most join optimization techniques, such as indexing, hashing, bloom-filters, or sorting, do not work for theta-joins with combinations of inequality predicates based on . In this paper, we therefore study and evaluate optimization approaches for the efficient execution of theta-joins. More specifically, we propose a theta-join algorithm that exploits the high selectivity of theta-joins to prune most join candidates early; the algorithm also parallelizes and distributes the processing (over CPU cores and compute nodes, respectively) for scalable query processing. The algorithm is baked into our distributed in-memory database system prototype A2DB. Our evaluation on various real-world and synthetic datasets shows that A2DB significantly outperforms existing single-machine DBMSs including PostgreSQL and distributed data processing systems, such as Apache SparkSQL, in processing highly selective theta-join queries.

Keywords

distributed computing, actor programming, theta-join, query optimization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!