
Anomaly detection of multivariate time series (MTS) is crucial in industrial intelligent systems. To address the challenges of absence of anomaly labels, fast inference time, multi-source and multi-modality in anomaly detection, researchers have primarily investigated unsupervised reconstruction-driven methods. However, the existing reconstruction-driven methods mainly focus on minimizing reconstruction errors while neglecting the importance of training methods that increase errors between normal and abnormal classes. Furthermore, accurately constructing the feature space of normal and abnormal classes during the reconstruction process remains a challenge. In this paper, we propose an innovative model, namely the confidence adversarial autoencoder (CAAE). The proposed CAAE combines a confidence network, based on window credibility judgment, with an autoencoder to provide credibility support for anomaly detection. We further introduce fake labels to provide the confidence network with a discriminative knowledge for identifying reconstructed data. Additionally, we implement the confidence adversarial training method to generate fake labels to construct an adversarial loss aiming to expand the decision boundary of anomaly scores. Extensive experimental results on publicly available time series datasets are provided to demonstrate the efficiency of our proposed CAAE. It reveals that excellent generalization ability and superior average performance are achieved on different datasets compared with the state-of-the-art methods.
autoencoder, Multivariate time series (MTS), adversarial training, Telecommunication, TK5101-6720, unsupervised learning, Transportation and communications, anomaly detection, HE1-9990
autoencoder, Multivariate time series (MTS), adversarial training, Telecommunication, TK5101-6720, unsupervised learning, Transportation and communications, anomaly detection, HE1-9990
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
