
Abstract We study fretting wear due to superimposed oscillations in the normal and tangential directions with respect to the contact plane (dual mode fretting wear). In the limit of infinite time, the profile of the indenter tends to a limiting shape, which does not change further. For axisymmetric profiles, the limiting shape is found analytically for the general case of two different frequencies and amplitudes of oscillations in normal and tangential direction. The dependence of worn volume on the frequency ratio is strongly singular showing sharp minima for small rational ratios of frequencies. For the special case of coinciding frequencies, the fretting process was studied both analytically and experimentally. Comparison of experimental results with theoretical predictions showed a good qualitative and quantitative agreement (discrepancy of the order of experimental noise).
численное прогнозирование, фреттинг-износ, fretting wear, dual-mode fretting, experimental validation, no-wear state, method of dimensionality reduction, 600 Technik, Technologie, уменьшения размерности
численное прогнозирование, фреттинг-износ, fretting wear, dual-mode fretting, experimental validation, no-wear state, method of dimensionality reduction, 600 Technik, Technologie, уменьшения размерности
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
