Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JOURNAL OF APPLIED I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Article . 2025 . Peer-reviewed
License: CC BY SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of the Effectiveness of Lightweight Encryption Algorithms on Data Performance and Security on IoT Devices

Authors: Damar Indrajati; Wahid Miftahul Ashari;

Evaluation of the Effectiveness of Lightweight Encryption Algorithms on Data Performance and Security on IoT Devices

Abstract

Data security remains a major concern in the Internet of Things (IoT) landscape due to the inherent limitations in computational power, memory capacity, and energy availability of IoT devices. To address these challenges, lightweight encryption algorithms have emerged as alternatives to conventional cryptographic methods, aiming to balance performance and security. This study evaluates the effectiveness of five encryption algorithms—SIMON64/128, SPECK64/128, XTEA64/128, PRESENT64/128, and AES128—on IoT devices through experimental analysis of their security strength, execution time, CPU utilization, memory usage, and power efficiency. The experiments were conducted on a Raspberry Pi 3B+ using C-based implementations to emulate realistic IoT scenarios. The findings reveal that AES128 offers the strongest security characteristics, including the highest Avalanche Effect (39.29%) and Differential Resistance Score (6.76/10), but at the expense of significant resource consumption. In contrast, SIMON64/128 and SPECK64/128 deliver superior performance in terms of speed and resource efficiency, making them ideal for low-power environments, albeit with concerns about potential cryptographic backdoors. XTEA64/128 emerges as a practical compromise, delivering moderate security and low power consumption without known vulnerabilities. Based on these results, AES128 is suitable for high-capacity IoT platforms prioritizing strong encryption, while SIMON and SPECK are preferable for resource-constrained devices, with XTEA serving as a balanced alternative. This research contributes a comparative framework to guide the selection of encryption algorithms for IoT systems, ensuring an optimal trade-off between security and operational efficiency.

Keywords

iot, keamanan informasi, kriptografi, Electronic computers. Computer science, QA75.5-76.95, perbandingan kriptografi

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold