Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://www.comp.nus....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/bibe.2...
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ConstrainedMotif: A Periodicity Constraint Based Algorithm to Predict Cell-Cycle Associated Promoter Motifs Using Time-Course Gene Expression Data

Authors: null Yingren Liu; K.R.K. Murthy; null Wing-Kin Sung;

ConstrainedMotif: A Periodicity Constraint Based Algorithm to Predict Cell-Cycle Associated Promoter Motifs Using Time-Course Gene Expression Data

Abstract

Cell-cycle associated promoter motif prediction is very important to understand the cell-cycle control and process. Modeling genome-wide gene expression as a function of the promoter sequence motif features has drawn great attention recently. The proposed techniques using this approach are not specific to cell-cycle associated motif discovery, hence find aperiodic motif weights across the time-course and lower sensitivity. Motifs are scored based on the successive model error reduction steps which may not reveal all relevant motifs since they are alternatives for the model. Another, drawback is, these methods output a list of sequences which may either contain several instances of a dominating motif box (a set of alternative sequence motifs) such as MCB or only a few instances of an important box. To address the above problems, we propose a multi-step constrained optimization based position weight matrix (PWM) motif finding methodology called ConstrainedMotif. It models the cell-cycle regulated gene expression as a linear function of the motif features while the weights of them are constrained to be periodic across the time-course. The score of a motif is the error reduction in the prediction by that motif alone. The multi-step modeling starts with a set of sequences and output a ranked list of cell-cycle associated PWM motifs. We evaluate this methodology using S. Cerevesiae cell-cycle data published by Spellman et al. The results show that ConstrainedMotif is more sensitive and most of the instances of the boxes are represented by the respective matching PWMs.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average