Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of technique for face detection in image based on binarization, scaling and segmentation methods

Authors: Eugene Fedorov; Tetyana Utkina; Olga Nechyporenko; Yaroslav Korpan;

Development of technique for face detection in image based on binarization, scaling and segmentation methods

Abstract

A technique for face detection in the image is proposed, which is based on binarization, scaling, and segmentation of the image, followed by the determination of the largest connected component that matches the image of the face. Modern methods of binarization, scaling, and taxonomic image segmentation have one or more of the following disadvantages: they have a high computational complexity; require the determination of parameter values. Taxonomic image segmentation methods may have additional disadvantages: they do not allow noise and outliers selection; clusters can’t have different shapes and sizes, and their number is fixed. Due to this, to improve the efficiency of face detection techniques, the methods of binarization, scaling and taxonomic segmentation needs to be improved. A binarization method is proposed, the distinction of which is the use of the image background. This allows to simplify the process of scaling and segmentation (since all the pixels in the background are represented by the same color), non-uniform brightness of the face, and not to use the threshold settings and additional parameters. A binary image scaling method is proposed, the distinction of which is the use of an arithmetic mean filter with threshold processing and fast wavelet transform. This allows to speed up the image segmentation process by about P 2 times, where P is the scaling parameter, and not to use the time-consuming procedure for determining. A binary scaled image segmentation method is proposed, the distinction of which is the use of density clustering. This allows to separate areas of the face of non-uniform brightness from the image background, noise and outliers. It also allows clusters to have different shapes and sizes, to not require setting the number of clusters and additional parameters. To determine the scaling parameter, numerous studies were conducted in this work, which concluded that the dependence of the segmentation time on the scaling parameter is close to exponential. It was also found that for small P, where P is the scaling parameter, the quality of face detection deteriorates slightly. The proposed technique for face detection in image based on binarization, scaling and segmentation can be used in intelligent computer systems for biometric identification of a person by the face image

Keywords

UDC 004.931, обнаружение лица; изображение; бинаризация; масштабирование; сегментация; плотностная кластеризация, face detection; image; binarization; scaling; segmentation; density clustering, виявлення обличчя; зображення; бінаризація; масштабування; сегментація; щільнісна кластеризація

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 6
  • 5
    views
    6
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
5
6
gold