Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industrial Informatics
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

One-Dimensional Residual Convolutional Autoencoder Based Feature Learning for Gearbox Fault Diagnosis

Authors: Jianbo Yu; Xingkang Zhou;

One-Dimensional Residual Convolutional Autoencoder Based Feature Learning for Gearbox Fault Diagnosis

Abstract

Vibration signals are generally utilized for machinery fault diagnosis to perform timely maintenance and then reduce losses. Thus, the feature extraction on one-dimensional vibration signals often determines accuracy of those fault diagnosis models. These typical deep neural networks (DNNs), e.g., convolutional neural networks (CNNs), perform well in feature learning and have been applied in machine fault diagnosis. However, the supervised learning of CNN often requires a large amount of labeled images and thus limits its wide applications. In this article, a new DNN, one-dimensional residual convolutional autoencoder (1-DRCAE), is proposed for learning features from vibration signals directly in an unsupervised-learning way. First, 1-D convolutional autoencoder is proposed in 1-DRCAE for feature extraction. Second, a deconvolution operation is developed as decoder of 1-DRCAE to reconstruct the filtered signals. Third, residual learning is employed in 1-DRCAE to perform feature learning on 1-D vibration signals. The results show that 1-DRCAE has good signal denoising and feature extraction performance on vibration signals. It performs better on feature extraction than the typical DNNs, e.g., deep belief network, stacked autoencoders, and 1-D CNN.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    166
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
166
Top 1%
Top 1%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!