Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biotribologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biotribology
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Amphiphilic gel lubrication and the solvophilic transition

Authors: Juan Manuel Urueña; Megan C. Cavanaugh; Jiho Kim; Eric O. McGhee; Cullen L.G. Davidson; Jose Gabriel Rosa; Brent S. Sumerlin; +3 Authors

Amphiphilic gel lubrication and the solvophilic transition

Abstract

Abstract Lubrication in biology uses lipids, proteins, and aqueous gels to maintain hydration and provide low shear stress over a range of sliding speeds and contact pressures. The unquestionably amphiphilic nature of proteins and the complexity found in the aqueous solutions suggest that these systems operate near an optimal solvophilic condition. To explore the potential for a solvophilic transition in an amphiphilic gel, we perform tribological and swelling measurements of poly(hydroxyethyl)methacrylate, pHEMA, equilibrated over a range of water-ethanol solutions. Depending on the ethanol concentration, Gemini pHEMA gels achieve either low friction (μ 1) and high adhesion. We hypothesize that as the solution becomes increasingly ethanol-rich the alkyl regions of ethanol more fully associate with the aliphatic regions of pHEMA, effectively coating the chains with a hydroxyl presenting surface, promoting hydrogen-bonding and the influx of water and leading to maximum in swelling and mesh size, leading to a dramatic reduction in friction and adhesion. We suggest that the tribological behaviors of amphiphilic Gemini gels reflect the presentation of hydrophobic and hydrophilic domains across the interfaces during sliding. These experiments explore the lubrication and solvophilic transitions in amphiphilic Gemini gels and suggest fundamental mechanisms and solution composition through which biotribological joints leverage lipid and protein-based complex fluids to achieve lubricity.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!